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We introduce L-idempotent analogues of topological vector spaces by means of domain
theory, study their basic properties, and prove the existence of free (dually) continuous L-semi-
modules over domains, (dually) continuous lattices and semilattices.
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Средствами теории областей введены L-идемпотентные аналоги топологических век-
торных пространств, изучены их основные свойства, и доказано существование свобод-
ных (дуально) непрерывных L-полумодулей над областями и (дуально) непрерывными
(полу)решетками.

1. Introduction. The goal of this paper is to develop foundations for lattice-valued idem-
potent functional analysis. Although the latter branch of mathematics exposes rapid growth
([8]), it is mostly focused at analogues of “conventional” objects of analysis obtained by
replacing the field of reals with idempotent semirings of “extended reals”. The most important
of them is the max-plus semiring (R̄,⊕,�), where R̄ = R ∪ {−∞}, a ⊕ b = max{a, b},
a� b = a+ b. The real vector spaces are replaced respectively with idempotent semimodules,
and meaningful analogues of convexity, separation etc. are introduced ([2]). Nevertheless,
despite rather general definitions, they are applied almost exclusively to finite or infinite
powers of the chosen semiring ([19, 20]). The situation looks like if the entire real functional
analysis was developed only in Rn and Rω.

We are going to show that idempotent analogues of notions and statements of the theory
of topological vector spaces are most naturally defined and investigated in rather general
settings, which are not restricted to reals or “almost reals”, but use “scalars” from completely
distributive lattices and “vectors” from continuous posets. An example of “lattice-valued”
approach to measure theory, which is intrinsically linked to our topic, can be found in [12]. We
refer the reader to the survey article [9] by J. D. Lawson on connections between idempotent
analysis and continuous semilattices. Our task is more simple and narrow: to define categories
for objects and morphisms, which correspond to topological vector spaces and continuous
linear and affine operators, to study their elementary properties and to establish useful techni-
cal results, and to describe free objects (in the sense of category theory) in the introduced
categories over the objects of underlying categories of continuous posets.
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This paper extends and mostly supercedes [13], in which similar free object also have
been constructed, but under more restrictive conditions and in less convenient terms of
hyperspaces.

2. Preliminaries. Elementary concepts of category theory can be found in [11]. Reader is
referred to [1] or [16] for the definitions of idempotent semiring and semimodule. An excellent
exposition of the most important topics that concern partially ordered sets, including directed
complete partial orders, continuous (semi)lattices, Scott/lower/Lawson topologies etc. can
be found in [4]. We recall only main definitions, facts and notation.

The bottom and the top elements of a poset (if they exist) are usually denoted resp. by
0 and 1. A subset A in a poset (X,6) is directed (filtered) if for all a1, a2 ∈ A there is a3 ∈ A
such that a1 6 a3 and a2 6 a3 (respectively a3 6 a1 and a3 6 a2). A poset is directed complete
(dcpo for short) if each non-empty directed subset has the least upper bound. An element a is
way below an element b in a poset (X,6) (which is denoted a� b) provided if a set D ⊂ X is
directed and supD > b, then there is d ∈ D such that d > a. A poset (X,6) is continuous if,
for each b ∈ X, the set {a ∈ X | a� b} is directed, and b is its least upper bound. A domain
is a continuous dcpo. A domain which is also a semilattice (a complete lattice) is called
a continuous semilattice (respectively a continuous lattice). For a set A in a poset (X,6) we
denote A↑ = {x ∈ X | a 6 x for some a ∈ A}, A↓ = {x ∈ X | x 6 a for some a ∈ A}. If
A↑ = A (or A↓ = A), then the set A is called upper (resp. lower). A filtered upper set is
called a filter.

On a poset (X,6), the Scott topology σ(X) is the least topology such that all directed
complete lower sets are closed. The lower topology ω(X) is the least topology such that all
the sets {x}↑, for x ∈ X, are closed. The Lawson topology λ(X) is the join of σ(X) and
ω(X), i.e., the least topology that contains the both these topologies.

For a partial order6 onX, the reverse partial order 6̃ is defined as a 6̃ b ⇐⇒ b 6 a. The
posetX with this order is denoted by either X̃ orXop. Then ˜(−) or (−)op is a functor ([11]) in
the category of partially ordered sets and isotone mappings. We apply˜also to all denotations
to mark dual notions and constructions that are obtained when the order on a set is reversed.
For example, 0̃ = 1, ˜supA = inf A etc. The topologies σ(X̃), ω(X̃), and λ(X̃) are called
respectively the dual Scott topology, the upper topology, and the dual Lawson topology on X.
A poset X is called a dually continuous semilattice (lattice) if X̃ is a continuous semilattice
(lattice).

Recall that an isotone mapping between dcpos is Scott continuous (i.e., continuous w.r.t.
the Scott topologies on both sets) if and only if it preserves all suprema of directed sets.

We use the following notation for the most used categories of (dually) continuous posets
and their isotone mappings.

The category of all domains and their Scott continuous mappings is denoted by Dom
(note that we do not require that the preimages of the open filters are open filters, compare
with the definition of DomF ilt, which will appear later). Its full subcategory with the objects
being all domains with bottom elements is denoted Dom⊥. If it is also required that bottom
elements are preserved by the morphisms, the subcategory Dom0 is obtained. This notation
style is applied also to the following categories.

The category CSem consists of all continuous (meet) semailttices and their Scott conti-
nuous meet-preserving mappings. CSem⊥ is its full subcategory that contain only the semi-
lattices with bottom elements, and CSem0 is obtained when also bottom preservation is
required. Similarly CSem1 is the category of all continuous semilattices with top elements
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and Scott continuous meet-preserving top-preserving maps.
If a continuous semilattice is complete, then it a compact Hausdorff topological lower

semilattice in its Lawson topology. Moreover, it is a Lawson semilattice, i.e., in each point it
possesses a local base consisting of subsemilattices. Hence the category of such semilattices
and their meet-preserving mappings that are respectively Lawson continuous, Scott conti-
nuous and lower continuous, are denoted by LLaws, LLaws↑, and LLaws↓. Let also CL,
CL↑, and CL↓ be the full subcategories resp. of LLaws, LLaws↑, and LLaws↓, generated by
the continuous lattices.

If ˜ (order reversing) is applied to all objects and morphisms of the categories CSem,
LLaws, LLaws↑, LLaws↓, CL, CL↑, and CL↓, then the obtained categories are denoted
DSem, ULaws, ULaws↓, ULaws↑, DL, DL↓, and DL↑ (note that ↑ is changed to ↓ and vice
versa). E.g., DL↓ is the category of dually continuous lattices and dually Scott continuous
join-preserving mappings.

Again, we add 0 or 1 to subscripts to require also that the bottom or the top elements
are preserved by the morphisms.

3. Idempotent semirings and idempotent semimodules. Linear and affine map-
pings. In the sequel (L,⊕,⊗) will be the lattice with the bottom and a top elements 0 and 1
respectively, and a binary operation ∗ : L × L → L such that 1 is a two-sided unit and ∗ is
associative and distributive w.r.t. ⊕ in both variables. Then (L,⊕,⊗) is a semiring.

Recall that a (left idempotent) (L,⊕, ∗)-semimodule ([1]) is a set X with operations
⊕̄ : X ×X → X and ∗̄ : L×X → X such that for all x, y, z ∈ X, α, β ∈ L:

(1) x ⊕̄ y = y ⊕̄x;
(2) (x ⊕̄ y) ⊕̄ z = x ⊕̄(y ⊕̄ z);
(3) there is an (obviously unique) element 0̄ ∈ X such that x ⊕̄ 0̄ = x for all x;
(4) α ∗̄(x ⊕̄ y) = (α ∗̄x) ⊕̄(α ∗̄ y), (α⊕ β) ∗̄x = (α ∗̄x) ⊕̄(β ∗̄x);
(5) (α ∗ β) ∗̄x = α ∗̄(β ∗̄x);
(6) 1 ∗̄x = x;
(7) 0 ∗̄x = 0̄.
Observe that these axioms imply that (X, ⊕̄) is an upper semilattice with the bottom

element 0̄, the order is defined as x 6 y ⇐⇒ x ⊕̄ y = y, and α ∗̄ 0̄ = 0̄ for all α ∈ L.
The operation ∗̄ is isotone in both variables.

Since an (L,⊕, ∗)-semimodule is an analogue of a vector space, for all x1, . . . , xn ∈ X and
α1, . . . , αn ∈ L, it is natural to call the expression α1 ∗̄x1 ⊕̄ . . . ⊕̄αn ∗̄xn a linear combination
of the elements xi with the coefficients αi. If α1 ⊕ . . .⊕ αn = 1, then the latter combination
is called convex.

Obviously, a closed under linear combinations subset of an L-semimodule is an L-semi-
module itself, i.e. a subsemimodule of the previous one. A subset that is closed under convex
combinations is, as usual, called convex. Observe that, similarly to L-semimodules, a convex
set is an upper semilattice with the operation x∨y = 1x⊕1y, but need not contain a bottom
element.

Analogues exist also for linear and affine mappings. A mapping f : X → Y between
(L,⊕, ∗)-semimodules is called linear if it preserves the linear combinations, i.e., for all
x1, . . . , xn ∈ X and α1, . . . , αn ∈ L, the equality

f(α1 ∗̄x1 ⊕̄ . . . ⊕̄αn ∗̄xn) = α1 ∗̄ f(x1) ⊕̄ . . . ⊕̄αn ∗̄ f(xn)

is valid. If the latter equality is ensured only for convex combinations, i.e. whenever α1 ⊕
. . . ⊕ αn = 1, then f is called affine. Observe that an affine mapping f preserves joins, i.e.
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f(x1 ⊕̄x2) = f(x1) ⊕̄ f(x2) for all x1, x2 ∈ X, therefore it is isotone. An affine mapping is
linear if and only if it preserves the least element.

4. Completeness and (order) continuity. From now on we will require that (L,⊕, ∗)
is a unital quantale ([18]), i.e. a complete lattice such that, for ∗ : L × L → L, the top
element 1 is a two-sided unit and ∗ is associative and infinitely distributive w.r.t. supremum
in both variables. Recall that we can treat ⊕ as a disjunction, and ∗ will be a (possibly
noncommutative) conjunction in an L-valued fuzzy logic ([5]). The Boolean case is obtained
for L = {0, 1}, ⊕ = ∨ and ∗ = ∧.

Respectively, an L-semimodule X is called complete if it is a complete lattice and the mul-
tiplication ∗̄ : L×X → X is infinitely distributive w.r.t. supremum in both variables as well.
In a complete L-semimodule X, it is possible to consistently define the linear combination
of an arbitrary number of points:

⊕
i∈I αi ∗̄xi = sup{αi ∗̄xi | i ∈ I}. See [2] for introduction

to complete L-semimodules and their morphisms in a particular but important case when L
is a max-plus idempotent semiring.

From now on, we additionally demand that L is a completely distributive lattice ([4]),
hence a compact Hausdorff distributive Lawson lattice. Therefore L and Lop are conti-
nuous lattices, and the elements of L are well approximated both from above and from
below. We impose similar requirements at idempotent semimodules, and it will be shown in
the subsequent paper that the obtained properties are proper analogues of local convexity
for the theory of compact closed sets in locally convex topological spaces.

Note that ∗ : L × L → L, being infinitely distributive over suprema in both variables,
is Scott continuous. We call an L-semimodule (X, ⊕̄, ∗̄) continuous if X is a domain, and
∗̄ : L×X → X is Scott continuous.

Observe that a continuous L-semimodule is a continuous, hence a complete latttice and
∗̄ is infinitely distributive in each variable w.r.t. the suprema. Recall that such a latti-
ce is a compact Hausdorff Lawson lower semilattice in its Lawson topology. We consi-
der the categories (L,⊕, ∗)-CSMod↑ and (L,⊕, ∗)-CSMod↓ that consist of all continuous
L-semimodules and their Scott continuous linear mappings (which therefore preserve all
suprema) and their lower continuous mappings, respectively. The intersection of the catego-
ries (L,⊕, ∗)-CSMod↑ and (L,⊕, ∗)-CSMod↓ is the category (L,⊕, ∗)-CSMod of all conti-
nuous L-semimodules and their Lawson continuous linear mappings.

To define more categories, we additionally require that ∗ : L × L → L distributes over
the filtered infima in both variables, hence is jointly continuous w.r.t. the Lawson topology
on L and w.r.t. the Scott topology on Lop. Then we call an L-semimodule dually continuous
if Xop is a domain, and ∗̄ : L×X → X is dually Scott continuous (i.e. ∗̄ : Lop×Xop → Xop is
Scott continuous). This is equivalent to the infinite distributivity of ∗̄ over the filtered infima
in both variables.

Similarly, a dually continuous L-semimodule (X, ⊕̄, ∗̄) is a dually continuous, not nece-
ssarily complete, upper semilattice with the least element, and ∗̄ is distributive in each vari-
able w.r.t. the finite suprema and the filtered infima. The categories (L,⊕, ∗)-DSMod↓ and
(L,⊕, ∗)-DSMod↑ consist of all dually continuous L-semimodules and their linear mappings
that are continuous, respectively, w.r.t. the dual Scott topologies (i.e. that preserve all filtered
infima) and w.r.t. the upper topologies. Again, we denote by (L,⊕, ∗)-DSMod the catego-
ry with the dually continuous L-semimodules as objects and the dually Lawson continuous
linear mappings as morphisms.

It a dually continuous L-semimodule X is complete, then it is a compact Hausdorff
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Lawson upper semilattice in the Lawson topology on Xop. If ∗̄ is jointly continuous w.r.t.
the Lawson topologies on L and Xop, then we use the term “compact Hausdorff Lawson
L-semimodule”. The requirement that (X, ⊕̄, ∗̄) is an L-semimodule, a topology on X is
given that makes it is a compact Hausdorff Lawson upper semilattice with the join ⊕̄,
and the multiplication ∗̄ is continuous, is an equivalent definition in more topological terms.
The full subcategories of (L,⊕, ∗)-DSMod↓, (L,⊕, ∗)-DSMod↑, and (L,⊕, ∗)-DSMod, wi-
th such objects, are denoted respectively by (L,⊕, ∗)-LwSMod↓, (L,⊕, ∗)-LwSMod↑, and
(L,⊕, ∗)-LwSMod.

If we allow the affine mappings instead of the linear ones, then the similar catego-
ries (L,⊕, ∗)-CSAff↑, (L,⊕, ∗)-CSAff↓, (L,⊕, ∗)-CSAff, (L,⊕, ∗)-DSAff↑, (L,⊕, ∗)-DSAff↓,
(L,⊕, ∗)-DSAff, (L,⊕, ∗)-LwSAff↓, (L,⊕, ∗)-LwSAff↑, and (L,⊕, ∗)-LwSAff are obtained.
Recall that, unlike linear mappings, affine mappings does not necessarily preserve the bottom
elements of L-semimodules.

Now we present some examples of (dually) continuous L-semimodules for different L.
The simplest case is L = 2 = {0, 1}, then there is a unique appropriate multiplication
∗̄ : 2 × X → X, namely 1 ∗̄x ≡ x, 0 ∗̄x ≡ 0̄. Hence each linear combination is either
trivial (with zero coefficients only) or affine, which in turn is a finite supremum. Thus,
affine mappings are simply join-preserving ones, and linearity is preservation of the joins
and the bottom elements. Clearly the continuous 2-semimodules are precisely the conti-
nuous lattices, the (complete) dually continuous 2-semimodules are the posets opposite
to (complete) continuous meet-semilattices with top elements, the 2-convex compacta are
complete continuous meet-semilattices (with or without top elements). All the defined above
categories can be easily identified with commonly known categories for continuous (semi-)
lattices.

If (L,⊕,⊗) is a bigger completely distributive lattice, then, putting ∗̄ = ⊗, we obtain
a quantale. E.g., let L = {0, 1

2
, 1}, then an L-semimodule X is an upper semilattice such

that, for all x ∈ X, we can take a “half” of x. If L is infinite, continuity considerations also
arise.

To see that there are examples that are not reduced to the above case, let L = I,
⊕ = max, ∗ = ·. Put

X = {A ⊂
cl
I × I | pr1(A) = I; (x, y1) ∈ A, y1 6 y2 6 1 =⇒ (x, y2) ∈ A},

Y = {B ⊂
cl
I × I | pr1(B) = I; (x, y1) ∈ B, y1 > y2 > 0 =⇒ (x, y2) ∈ B},

A1 6 A2 in X ⇐⇒ A1 ⊃ A2, B1 6 B2 in Y ⇐⇒ B1 ⊂ B2,

then X is a continuous, but not dually continuous, lattice with the top element I ×{1} and
the bottom element I × I, and Y is a dually continuous, but not continuous, lattice with
the top element I × I and the bottom element I × {0}. The join ⊕̄ is the intersection in X
and is the union in Y . We define multiplications as follows:

α ∗̄A = {(x, y′) ∈ I × I | y′ > αy for some (x, y) ∈ A},
α ∗̄B = {(x, y′) ∈ I × I | y′ 6 αy for some (x, y) ∈ B},

for all α ∈ I, A ∈ X, B ∈ Y , then (X, ⊕̄, ∗̄) is a continuous L-semimodule and (Y, ⊕̄, ∗̄) is
a complete dually continuous L-semimodule.

5. Lattices of Scott continuous mappings and duality. From now on [A→ B] stands
for the set of all Scott continuous mappings from a domain A to a domain B. It follows
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from [3, Theorem 4] (although called “folklore knowledge” in [6]) that, for a domain D and
a completely distributive lattice L, the set [D → L] is a completely distributive lattice. If
the domain D has the bottom element 0, then the subset [D → L]0 = {ϕ ∈ [D → L] |
f(0) = 0} is a complete sublattice of [D → L], therefore is a completely distributive lattice
as well.

We shall use the Lawson duality for domains, cf. [4]. All “triple-numbered” references
in this section will be related to the latter citation, but the notation will follow [7]. For
a domain D, let D4 be the ordered by inclusion set of all non-empty (Scott) open filters
in D. The poset D4, which is called the Lawson dual of D, is a domain as well, and it is
obvious that maxD4 = D. Due to Lemma IV-2.9 the non-empty open filters in D4 are
precisely the sets of the form {F ∈ D4 | F 3 d}, for d ∈ D. Hence the correspondence
uD : D → (D4)4 that sends each d to {F ∈ D4 | F 3 d} is an order isomorphism.

Let DomF ilt be the category of all domains and all mappings between them such that
the preimages of all non-empty open filters are non-empty open filters as well. This imp-
lies monotonicity and Scott continuity, cf. the remark after Definition IV-2.2. The functor
(−)4 : DomF ilt→ DomF iltop is obtained. It sends D to D4, and, for a morphism f : D →
D′ in DomF ilt, the mapping f4 : D′4 → D4 takes each non-empty open filter F to its
preimage f−1(F ). By the above the identity functor is isomorphic to the composition (−)4 ◦
(−)4 via the natural transformation u that consists of all uD, thus (−)4 is a duality of
the category DomF ilt onto itself.

Observe that the category CSem1 of all continuous semilattices with top elements and
their Scott continuous top-preserving semilattice morphisms is a subcategory of DomF ilt,
and there is a restriction of (−)4 to the functor CSem1 → CSemop

1 , which also is a self-duality.
Let DomF ilt0 be the category that consists of all domains with bottom elements, and

all bottom-preserving mappings such that the preimages of open filters are (not necessarily
non-empty) open filters. For each object D of DomF ilt0, we denote by D> the poset D
with the top element > adjoined. This poset is an object of DomF ilt such that its top
element is isolated from below. For a morphism f : D → D′ in DomF ilt0, let f> : D> → D′>

send each d ∈ D to f(d) ∈ D′, and > to >. Note that f> is a morphism in DomF ilt, and
(−)> : DomF ilt0 → DomF ilt is a functor which is an embedding of categories. Its restriction
embeds the category CSem0 that consists of all continuous semilattices with bottom elements,
and all Scott continuous semilattice morphisms that preserve the bottom elements, into
the category CSem1.

We also need the modified version of the Lawson duality, which was introduced in [14].
For a domain D with the bottom element, the Lawson dual (D>)4 is a domain with the top
element D> isolated from below, cf. Exercise IV.2-21, and with the bottom element {>}. If
D is also a continuous semilattice with a bottom element, then the same is valid for (D>)4.
Hence a poset

D∧ = (D>)4 \ {D>}.

is an object of respectively DomF ilt0 or CSem0 as well. This assignment extends to a contra-
variant functor (−)∧ : DomF ilt0 → DomF ilt0 (and its restriction (−)∧ : CSem0 → CSem0)
as follows: each F ∈ (D′>)4, F 6= D′>, does not contain the bottom element 0′ ∈ D′,
therefore, for an arrow f : D → D′ in DomF ilt0 (or CSem0), the mapping (f>)4 : (D′>)4 →
(D>)4 takes such F to the open filter (f>)−1(F ) which does not contain the bottom element
0 ∈ S, hence (f>)4(F ) 6= D>. On the other hand, (f>)4(D′>) = D>. Thus we de-
fine the mapping f∧ : D′∧ → D∧ as a restriction of (f>)4. By the above the assignment
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s 7→ {F ∈ D∧ | s ∈ F} is an isomorphism uD : D → D∧∧ which is a component of a natural
transformation u : 1DomF ilt0 → (−)∧∧ (or u : 1CSem0 → (−)∧∧). Thus DomF ilt0 and CSem0

are self-dual under the contravariant functors, for which we use the same notation (−)∧. By
the above we consider these self-dualities as restrictions of the self-dualities for DomF ilt and
CSem1 via (−)4 to the subcategories DomF ilt0 and CSem0. Observe that the elements of
D∧ can be identified with the not necessarily non-empty open filters in D distinct from D
itself, and we shall do this in the sequel.

For domains D and D′, consider the following properties of a relation P ⊂ D ×D′:

(1) for all x0 ∈ D, y0 ∈ D′ the sets x0P ={y ∈ D′ |(x0, y) ∈ P}, Py0 = {x ∈ D |(x, y0) ∈ P}
are non-empty open filters;

(2) for all x1, x2 ∈ D, x1 66 x2 there is y ∈ D′ such that (x1, y) ∈ P , but (x2, y) /∈ P ;
(3) for all y1, y2 ∈ D′, y1 66 y2 there is x ∈ D such that (x, y1) ∈ P , but (x, y2) /∈ P.

Theorem 1. For domains D and D′ and a relation P ⊂ D × D′ that satisfies (1)–(3),
the mapping i : D′ → D4 that takes each y ∈ D′ to the open filter Py ⊂ D is an isomorphism.
Conversely, each isomorphism i : D′ → D4 is determined in the above manner by a unique
relation P ⊂ D×D′ that satisfies (1)–(3). In particular, the identity mapping D4 → D4 is
determined by the relation P = {(d, F ) ∈ D ×D4 | d ∈ F}.

Proof. (=⇒) We similarly define i′ : D → D′4 as follows: x 7→ xP for all x ∈ D. Recall that
by Lemma II.2-8 ([4]) the joint Scott continuity of the characteristic mapping P : D×D′ → 2
is equivalent to its Scott continuity in each variable separately, which holds due to (1). Then
i and i′ are Scott continuous injective mappings.

Each open filter F in D4 is of the form {F ∈ D4 | F 3 x} for some x ∈ D, hence its
preimage under i is equal to

{y ∈ D′ | Py 3 x} = xP,

hence is a non-empty open filter as well. Therefore i, and similarly i′, are morphisms in
DomF ilt. We can apply to i the contravariant functor (−)4. The mapping i4 : D′44 → D4

takes each non-empty Scott open filter F ⊂ D′4 to i−1(F). Then i4 ◦ uD′ : D′ → D4 sends
all y to

{x ∈ D | i(x) 3 y} = {x ∈ D | y ∈ xP} = Py = i′(y).

Since uD′ is an isomorphism and i′ is injective by (2), the mapping i4 is injective as well,
hence i is surjective. Taking into account that i is meet-preserving, we arrive at conclusion
that i is an order isomorphism.

Observe that similarly i′4 ◦ uD : D → D′4 coincides with i, hence i′ is an isomorphism
as well.

(⇐=) Let i : D → D′4 be an isomorphism. It is straightforward to verify that the relation
P = {(x, y) ∈ D ×D′ | y /∈ i(x)} satisfies properties (1)–(3) and is unique that determines
i in the above manner. If D′ = D4 and i is the identity mapping, then P consists of all
(d, F ) ∈ D ×D4 such that d ∈ F .

Remark 1. If the domains D and D′ in the latter theorem are continuous semilattices,
then condition (1) can be equivalently formulated as the distributivity of the characteristic
mapping P : D ×D′ → 2 w.r.t. meet in both variables.
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Similarly, for domains D and D′, with bottom elements, which are denoted by 0, consider
the following properties of a relation P ⊂ D ×D′:

(1) for all x0 ∈ D, y0 ∈ D′ the sets x0P = {y ∈ D′ | (x0, y) ∈ P}, Py0 = {x ∈ D |
(x, y0) ∈ P} are (not necessarily non-empty) open filters, and 0P = P0 = ∅;

(2) for all x1, x2 ∈ D, x1 66 x2 there is y ∈ D′ such that (x1, y) ∈ P , but (x2, y) /∈ P ;
(3) for all y1, y2 ∈ D′, y1 66 y2 there is x ∈ D such that (x, y1) ∈ P , but (x, y2) /∈ P .

Observe that then neither x0P = D′ nor Py0 = D, hence x0P ∈ D′∧, Py0 ∈ D∧ (we
adjoin the missed top element >).

Theorem 2. For domains D and D′ and a relation P ⊂ D × D′ that satisfies the above
conditions (1)–(3), the mapping i : D′ → D∧ that takes each y ∈ D′ to the open filter
Py∪{>} ⊂ D> is an isomorphism. Conversely, each isomorphism i : D′ → D∧ is determined
in the above manner by a unique relation P ⊂ D ×D′ that satisfies (1)–(3). In particular,
the identity mappingD∧ → D∧ is determined by the relation P = {(d, F ) ∈ D×D∧ | d ∈ F}.

Proof is quite analogous to the proof of the previous theorem.

Remark 2. If the domains D and D′ are continuous semilattices with bottom elements, then
condition (1) is equivalent to the following one: the characteristic mapping P : D ×D′ → 2
is distributive w.r.t. meet in both variables, and P (x, 0) = P (0, y) = 0 for all x ∈ D, y ∈ D′.

Following [14], we call a relation P that satisfy one of the given above sets of conditions
(1)–(3) (which one, will depend on a context) a separating polarity.

Remark 3. Observe that these conditions are symmetric w.r.t. the involved domains, hence
we can always assume for simplicity that either D′ is equal to D4 (or to D∧) and P is the “∈”
relation, or that D is equal to D′4 (or to D′∧) and P is the “3” relation.

Definition 1 ([4]). If S, S ′ are posets and p : S → S ′, q : S ′ → S are functions such that for
all s ∈ S and s′ ∈ S ′

s 6S q(s
′) iff s′ 6S′ q(s),

then the quadruple (S, p, q, S ′) is called a contravariant Galois connection.

Such p, q are antitone, and the latter definition is symmetric, i.e. (S ′, q, p, S) is a contra-
variant Galois connection as well.

Given domains D and D′ and a separating polarity P ⊂ D × D′, we define a relation
PL
4 ⊂ [D → L]× [D′ → L̃] as follows:

(ϕ, ψ) ∈ PL
4 ⇐⇒ ϕ(x) > ψ(y) in L for all x ∈ D, y ∈ D′ such that (x, y) ∈ P.

By the above, we can assume that D′ = D4 and P = ∈, then the relation ∈L4 ⊂ [D →
L]× [D4 → L̃] is the following:

(ϕ, ψ) ∈ ∈L4 ⇐⇒ ϕ(d) > ψ(F ) in L for all d ∈ D,F ∈ D4 such that d ∈ F.

The characteristic mapping of PL
4 is isotone, and, for all ϕ ∈ [D → L], ψ ∈ [D′ → L̃],

the inclusion (ϕ, ψ) ∈ PL
4 is equivalent to either of the following two statements:
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(*) ϕ > q(ψ), where q(ψ) : D → L is determined by the equality

q(ψ)(x) = sup{ψ(y) | (x, y) ∈ P}, x ∈ D;

and
(**) ψ >̃ p(ϕ), where p(ϕ) : D′ → L̃ is determined by the equality

p(ϕ)(y) = ˜sup{ϕ(x) | (x, y) ∈ P}, y ∈ D′.

Observe that p(ϕ) ∈ [D′ → L̃], q(ψ) ∈ [D → L], therefore ([D → L]op, p, q, [D′ → L̃]op)
is a contravariant Galois connection.

Theorem 3. The mappings p : [D → L] → [D′ → L̃] and q : [D′ → L̃] → [D → L] are
mutually inverse order antiisomorphisms.

Proof. To prove that two mappings that constitute a Galois correspondence are mutually
inverse, it is sufficient to show that they are injective. We prove this for p, the proof for q
is dual. Assume that the considered mappings are p : [D → L] → [D4 → L̃] and q : [D4 →
L̃]→ [D → L].

Let ϕ 66 ϕ′ in [D → L], then there is d0 ∈ D such that ϕ(d0) 66 ϕ′(d0). The lattice L
is continuous, the element ϕ(d0) is the least upper bound of all α ∈ L way below it, hence
there is α� ϕ(d0) such that α 66 ϕ′(d0). Then ϕ(d0) is in the open set {β ∈ L | α� β}.

Since D is continuous and ϕ is Scott continuous, and the open filters form a basis of
the Scott topology in a domain (cf. Theorem II-1.14), there is an open filter F ∈ D4 such
that F 3 d0 and α � ϕ(d) for all d ∈ F . Then p(ϕ)(F ) = inf{ϕ(d) | d ∈ F} > α, but
p(ϕ′)(F ) = inf{ϕ′(d) | d ∈ F} 6 ϕ′(d0) 6> α, which implies p(ϕ′)(F ) 6= p(ϕ)(F ).

Similarly, for domains D and D′ with bottom elements and a separating polarity P ⊂
D ×D′, we define a relation PL

∧ ⊂ [D → L]0 × [D′ → L̃]0 by the same equality:

(ϕ, ψ) ∈ PL
∧ ⇐⇒ ϕ(x) > ψ(y) in L for all x ∈ D, y ∈ D′ such that (x, y) ∈ P.

Again, we can assume that D′ = D∧ and P = ∈, then ∈L∧ ⊂ [D → L]0 × [D4 → L̃]0 is
the following:

(ϕ, ψ) ∈ ∈L∧ ⇐⇒ ϕ(d) > ψ(F ) in L for all d ∈ D,F ∈ D∧ such that d ∈ F,

which is equivalent to either of the following two statements:
(*) ϕ > q0(ψ), where q0(ψ) : D → L is determined by the equality

q0(ψ)(x) = sup{ψ(y) | (x, y) ∈ P}, x ∈ D;

and
(**) ψ >̃ p0(ϕ), where p0(ϕ) : D′ → L̃ is determined by the equality

p0(ϕ)(y) = ˜sup{ϕ(x) | (x, y) ∈ P}, y ∈ D′.

Here in (*) and (**) we assume that sup∅ = 0, ˜sup∅ = 1. Then ([D → L]op0 , p0, q0, [D
′ →

L̃]op0 ) is also a contravariant Galois connection, and the following statement holds.

Theorem 4. The mappings p0 : [D → L]0 → [D′ → L̃]0 and q0 : [D′ → L̃]0 → [D → L]0 are
mutually inverse order antiisomorphisms.
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6. Continuous and dually continuous semimodules of Scott continuous mappings
and monotonic predicates. Now we describe probably the most important classes of
L-semimodules, which, unlike the two previous examples, in rather general settings are si-
multaneously continuous and dually continuous.

For a domain D, both the finite and infinite suprema in the lattice [D → L] are calculated
argumentwise:

(sup
i∈I

ϕi)(d) = sup
i∈I

(ϕi(d)), d ∈ D,

for each collection {ϕi | i ∈ I} of elements of [D → L]. In particular, for ϕ1, ϕ2 ∈ [D → L]
the join ϕ1 ⊕̄ϕ2 is equal to (ϕ1 ⊕̄ϕ2)(d) = ϕ1(d) ⊕ ϕ2(d), d ∈ D. Unfortunately, the argu-
mentwise infimum infi∈I ϕi(d), d ∈ D, need not be Scott continuous, but for each isotone
function ϕ : D → L the greatest Scott continuous function D → L that precedes ϕ argu-
mentwise is equal to

ϕl(d) = sup{ϕ(d′) | d′ ∈ D, d′ � d}, d ∈ D.

Hence
(inf
i∈I

ϕi)(d) = sup{inf
i∈I

ϕi(d
′) | d′ ∈ D, d′ � d}, d ∈ D.

Nevertheless, the finite infima are calculated argumentwise, in particular, for ϕ1, ϕ2 ∈ [D →
L] the meet ϕ1 ⊗̄ϕ2 is equal to (ϕ1 ⊗̄ϕ2)(d) = ϕ1(d)⊗ ϕ2(d), d ∈ D.

Recall that we consider an operation ∗ : L × L → L that is associative and infinitely
distributive w.r.t. supremum in both variables, and the top element 1 is a two-sided unit.
Then ∗ is (separately and jointly) Scott continuous, which allows to define an operation
∗̄ : L × [D → L] → [D → L] in a straightforward manner: for α ∈ L and ϕ ∈ [D → L], let
(α ∗̄ϕ)(d) = α∗ϕ(d) for all d ∈ D. It is clear that ∗̄ infinitely distributes over suprema in both
variables, hence is Scott continuous as well. Therefore we obtain the following assertions.

Theorem 5. For a domain D, the triple ([D → L], ⊕̄, ∗̄) is a continuous L-semimodule. If,
moreover, D contains a bottom element, then ([D → L], ⊕̄, ∗̄) is a complete sublattice and
subsemimodule of [D → L], hence is a continuous L-semimodule as well.

Theorem 6. For a domain D, the triple ([D → L], ⊕̄, ∗̄) is a complete dually continuous
L-semimodule if and only if the multiplication ∗ : L×L→ L is distributive in both variables
w.r.t. the filtered infima.

Observe that the latter distributivity is equivalent to the continuity of ∗ w.r.t. the dual
Lawson topology.

Proof. Necessity is obvious, because L can be considered as a sublattice of [D → L]: each
α ∈ L is identified with the constant function that maps D to α.
Sufficiency. Let ∗ : L×L→ L be distributive in both variables w.r.t. the filtered infima. For
each filtered set {αi | i ∈ I} ⊂ L and a function ϕ ∈ [D → L] one has

inf
i∈I

αi ∗ ϕ(d) = (inf
i∈I

αi) ∗ ϕ(d), d ∈ D,

hence (infi∈I αi) ∗̄ϕ is the most lower bound of all αi ∗̄ϕ in [D → L], which is the required
distributivity in the first variable.
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Now we consider α ∈ L and a filtered collection {ϕi | i ∈ I} ⊂ [D → L]. Recall that
the infimum ψ of {ϕi | i ∈ I} in [D → L] is equal to

ψ(d) = sup{inf
i∈I

ϕi(d
′) | d′ ∈ D, d′ � d}, d ∈ D.

Similarly the infimum ψ′ of all α ∗̄ϕi is equal to

ψ′(d) = sup{inf
i∈I

α ∗ ϕi(d′) | d′ ∈ D, d′ � d} = sup{α ∗ inf
i∈I

ϕi(d
′) | d′ ∈ D, d′ � d} =

= α ∗ sup{inf
i∈I

ϕi(d
′) | d′ ∈ D, d′ � d} = α ∗ ψ(d),

for all d ∈ D, which completes the proof.

Analogously we obtain the following result.

Theorem 7. For a domain D with a bottom element but with |D| 6= 1, the triple ([D →
L]0, ⊕̄, ∗̄) is a complete dually continuous L-semimodule if and only if the multiplication
∗ : L× L→ L is distributive in both variables w.r.t. the filtered infima.

Now we consider the order dual posets to the lattices of Scott continuous functions.
Following [6], for a domain D we call elements of the set [D → Lop]op L-fuzzy monotonic

predicates on D. The elements of D are considered as pieces of information about the state of
a certain system or process, and a 6 b in D means that b contains more information than a
(is more specific/restrictive). For m ∈ [D → Lop]op and a ∈ D, we regard m(a) as the truth
value of a, hence it is required that m(b) 6 m(a) for all a 6 b. The second op means that we
order fuzzy predicates pointwisely, i.e. m1 6 m2 iff m1(a) 6 m2(a) in L (not in Lop !) for all
a ∈ D. We denote M [L]D = [D → Lop]op, and, for D with the least element 0, consider also
the subset M[L]D ⊂M [L]D of all normalized predicates that take 0 ∈ D (no information) to
1 ∈ L (complete truth).

Obviously both M [L]D and M[L]D are completely distributive lattices, hence are conti-
nuous and dually continuous lattices. It is also clear that all infima and finite suprema of
functions in M [L]D and M[L]D, including the pairwise joins m1 ⊕̄m2, are calculated argu-
mentwise, whereas the supremum of a collection {mi | i ∈ I} of elements of these lattices is
equal to

(sup
i∈I

mi)(d) = inf{sup
i∈I

mi(d
′) | d′ ∈ D, d′ � d}, d ∈ D.

Theorem 3 implies the following statement.

Corollary 1. For domains D, D′ such that there is a separating polarity P ⊂ D × D′,
the posets M [L]D = [D → Lop]op and M [L̃]D

′ = [D′ → L]op are antiisomorphic.

Note that the mentioned antiisomorphism p : M [L]D → M [L̃]D
′ is of the form: for m ∈

M [L]D, the monotone predicate m′ = p(m) ∈M [L̃]D is determined by the equality

m′(y) = sup{m(x) | (x, y) ∈ P} in L, y ∈ D′,

the inverse antiisomorphism is analogous, but the supremum is taken in L̃. In particular,
there is an isomorphism κ[L]D between the posets M [L]D = [D → Lop]op and M [L̃]D

4 =

[D4 → L]op, namely

κ[L]D(m)(F ) = sup{m(d) | d ∈ F}, m ∈M [L]D,F ∈ D4.

Analogously, one has the following consequence of Theorem 4.
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Corollary 2. For domains D, D′ with bottom elements such that there is a separating
polarity P ⊂ D × D′, the posets M[L]D = [D → Lop]op0 and M[L̃]D

′ = [D′ → L]op0 are
antiisomorphic.

The formulae are the same, but the convention sup∅ = 0, ˜sup∅ = 1 is used. In particular,
the posets M[L]D = [D → Lop]op0 and M[L̃]D

∧ = [D∧ → L]op0 are antiisomorphic through
the mapping κ[L]D:

κ[L]D(m)(F ) = sup{m(d) | d ∈ F}, m ∈M[L]D,F ∈ D∧.

If only one poset of Scott continuous mappings is “turned over”, then we obtain the order
isomorphisms

κ[L]D : M [L]D = [D → Lop]op → [D4 → L]

for each domain D and

κ[L]D : M[L]D = [D → Lop]op0 → [D∧ → L]0

for each domain D with a bottom element. Recall that the right-hand posets are continuous
L-semimodules and (for a “sufficiently good” multiplication ∗) complete dually continuous
L-semimodules. Therefore we can transfer the multiplications ∗̄ via the isomorphisms to
M [L]D andM[L]D, making them continuous (complete dually continuous) L-semimodules as
well.

Theorem 8. For a domain D, the unique multiplication ~̄ : L ×M [L]D → M [L]D that is
mapped with κ[L]D : M [L]D → [D4 → L] to the multiplication ∗̄ : L× [D4 → L]→ [D4 →
L], is defined by the formula

(α ~̄m)(d) = inf{α ∗m(d′) | d′ ∈ D, d′ � d},

m ∈ M [L]D, d ∈ D. If ∗ : L × L → L is dually Scott continuous, then a simpler equivalent
formula is valid:

(α ~̄m)(d) = α ∗m(d), m ∈M [L]D, d ∈ D.

Proof is routine but straightforward, same as for the following statement:

Theorem 9. For a domain D with the bottom element 0, the unique multiplication �̄ : L×
M[L]D → M[L]D that is mapped with κ[L]D : M[L]D → [D∧ → L]0 to the multiplication
∗̄ : L× [D∧ → L]0 → [D∧ → L]0, is defined by the formula

(α �̄m)(d) =

{
(α ~̄m)(d), d 6= 0,

1, d = 0,

m ∈ M[L]D, d ∈ D. If ∗ : L × L → L is dually Scott continuous, then a simpler equivalent
formula is valid:

(α �̄m)(d) =

{
α ∗m(d), d 6= 0,

1, d = 0,
m ∈M[L]D, d ∈ D.

Corollary 3. For a domain D, the triple (M [L]D, ⊕̄, ~̄) is a continuous L -semimodule.
If ∗ : L × L → L is dually Scott continuous, then (M [L]D, ⊕̄, ~̄) is also a complete dually
continuous L-semimodule.
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Corollary 4. For a domain D with a bottom element, the triple (M[L]D, ⊕̄, �̄) is a conti-
nuous L-semimodule. If ∗ : L×L→ L is dually Scott continuous, then (M[L]D, ⊕̄, �̄) is also
a complete dually continuous L-semimodule.

7. Subsemilattices and approximation. A continuous semilattice is called stably conti-
nuous [4] if the relation � in it is multiplicative, i.e., x � y and x � z imply x � y ∧ z.
This is equivalent to x′ � x ∧ y′ � y =⇒ x′ ∧ y′ � x ∧ y.

Lemma 1. Let D be a stably continuous semilattice. Then the set [D → L]∧ of all Scott
continuous meet-preserving mappings from D to L is a Lawson closed lower subsemilattice
in the completely distributive lattice [D → L].

Proof. It is obvious that the pointwise infimum of two mappings in [D → L]∧ is Scott
continuous and meet-preserving as well, hence [D → L]∧ is a lower subsemilattice of [D → L].

Let f ∈ [D → L] \ [D → L]∧, then there are d1, d2 ∈ D such that f(d1 ⊗ d2) 6>
f(d1)⊗ f(d2). By the Scott continuity of f there are d′1 � d1, d′2 � d2 such that f(d1 ⊗ d2)
6> f(d′1) ⊗ f(d′2). Moreover, we can choose Scott open sets U1 3 f(d′1), U2 3 f(d′2) in L
such that f(d1 ⊗ d2) 6> inf U1 ⊗ inf U2. Observe that by the stable continuity of D the set
{d ∈ D | d′1 ⊗ d′2 � d} is an open filter, therefore the mapping f0 : D → L,

f0(d) =

{
0, d′1 ⊗ d′2 6� d,

inf U1 ⊗ inf U2, d′1 ⊗ d′2 � d,
d ∈ D,

is Scott continuous. Hence the set V = {g ∈ [D → L] | g 6> f0} is lower open, the set
W = {g ∈ [D → L] | g(d′1) ∈ U1, g(d′2) ∈ U2} is Scott open, and if g ∈ V ∩ W , then
g(d′1⊗ d′2) 6> inf U1⊗ inf U2, g(d′1)⊗ g(d′2) > inf U1⊗ inf U2, hence g(d′1⊗ d′2) 6> g(d′1)⊗ g(d′2),
and g does not belongs to [D → L]∧. This proves that the complement of [D → L]∧ in
[D → L] is Lawson open.

For a stably continuous semilattice D with a bottom element we denote by [D → L]∧0

the set of all Scott continuous bottom-preserving meet-preserving mappings from D to L,
and by [D → L]∧+0 the set of all Scott continuous mappings f : D → L such that f(0) = 0
and

f(d1)⊗ f(d2) = f(d1 ⊗ d2)⊕ inf f(D \ {0})

for all d1, d2 ∈ D \ {0}. The latter property is equivalent to

f(d) =

{
g(d), d ∈ D \ {0},
0, d = 0,

for some g ∈ [D → L]∧. For convenience we call such mappings almost meet-preserving.

Corollary 5. Let D be a stably continuous semilattice with a bottom element. Then the sets
[D → L]∧0 and [D → L]∧+0 are Lawson closed lower subsemilattices in the completely
distributive lattice [D → L]0 of all Scott continuous bottom-preserving mapping.

Observe that [D → L]∧ and [D → L]∧+0 have top elements, therefore:
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Corollary 6. Let D be a stably continuous semilattice. Then the set [D → L]∧ of all Scott
continuous meet preserving mappings from D to L is a continuous lattice. If D has a bottom
element, then the set [D → L]∧0 of all Scott continuous bottom-preserving meet-preserving
mappings from D to L is a complete continuous semilattice, and the set [D → L]∧+0 of
all Scott continuous bottom-preserving almost meet-preserving mappings from D to L is
a continuous lattice.

Lemma 2. Let D be a domain, f : D → L be Scott continuous. For each Scott open set
U ( D, denote by fU the following function from D to L:

fU(d) =

{
sup{f(d′) | d′ /∈ U}, d /∈ U,
1, d ∈ U,

d ∈ D.

Then:

(a) f(d) = inf{fU(d) | U ( D is a Scott open subset} for all d ∈ D;

(b) if D is a continuous semilattice and f is meet-preserving, then

f(d) = inf{fF (d) | F ( D is a Scott open filter}

for all d ∈ D.

Proof. We prove only (b), the reader can easily modify the proof to obtain (a).
Obviously f 6 fF for all Scott open filters F , hence the “6” sign is immediate.
To prove the reverse inequality, for d ∈ D denote α = f(d) and choose arbitrary β ∈ L,

β 66 α. Then there is a Scott open filter Φβ ⊂ L such that β ∈ Φβ, α /∈ Φβ.
Due to meet preservation, the preimage f−1(Φβ) = Fβ is a Scott open filter in D, which

does not contain d, and

fFβ(d) = sup{f(d′) | d′ /∈ Fβ} = sup{f(d′) | d′ ∈ D, f(d′) /∈ Φβ} 6 sup{γ ∈ L | γ 6> β},

therefore

inf{fF (d) | F ⊂ D is a Scott open filter, d /∈ F} 6 inf{fFβ(d) | β 66 α} 6
6 inf

{
sup{γ ∈ L | γ 6> β}

∣∣ β 66 α
}
.

It has been proved in [10] that, for a complete lattice L, the equality

inf
{

sup{γ ∈ L | γ 6> β}
∣∣ β 66 α

}
= α

for all α ∈ L is equivalent to the complete distributivity of L, which holds in our case. Thus

inf{fF (d) | F ( D is a Scott open filter} 6 α = f(d),

which completes the proof.

Remark 4. The functions inf{fU1 , . . . , fUn}, for the finite collections U1, . . . , Un of Scott
open sets in D, form a filtered set in [D → L], hence provide an approximation from above
by functions with finite ranges. In particular, for a meet-preserving function f : D → L and
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a finite collection F1, . . . , Fn of open filters in D the function inf{fF1 , . . . , fFn} is also in
[D → L]∧.

It is easy also to observe that, if f attains only the values in a finite sublattice L0 ⊂ L,
then f can be obtained as the finite infimum of functions of the form fU :

f(d) = inf{fU(d) | U = f−1({α}↑), α ∈ L0}

for all d ∈ D. For a meet-preserving function f , all the sets f−1({α}↑), α ∈ L0 are open
filters, hence such fU are meet-preserving as well.

To obtain directed approximations from below by functions with finite ranges is easier.

Lemma 3. Let D be a domain, f ∈ [D → L]. For each A = {α1, . . . , αn} ⊂ L and
Ui = f−1({β ∈ L | αi � β}) for i = 1, . . . , n, denote

fA(d) = sup{αi | 1 6 i 6 n, d ∈ Ui}, d ∈ D.

Then fA ∈ [D → L], and

f(d) = sup{fA(d) | A = {α1, . . . , αn} ⊂ L, n ∈ N}

for all d ∈ D.

To keep meet preservation, the construction should be complicated:

Lemma 4. Let D be a stably continuous semilattice, f ∈ [D → L]∧. For each A =
{α1, . . . , αn} ⊂ L denote

Ui = f−1({β ∈ L | αi � β}), i = 1, . . . , n,

Ui1...ik = {d1 ∧ · · · ∧ dk | d1 ∈ Ui1 , . . . , dk ∈ Uik}, 1 6 i1 < · · · < ik 6 n,

and
fA(d) = sup{αi1 ⊗ . . .⊗ αik | d ∈ Ui1...ik , 1 6 i1 < · · · < ik 6 n}, d ∈ D.

Then fA ∈ [D → L]∧, and

f(d) = sup{fA(d) | A = {α1, . . . , αn} ⊂ L, n ∈ N}

for all d ∈ D.

The proofs are straightforward. Note that all Ui1...ik are open filters. Obviously, for
a function f ∈ [D → L]∧0, the approximating functions fA provided by of the latter theorem
are also meet- and bottom-preserving.

By Exercise IV-2.22 ([4]), a continuous semilattice D with a top element is complete
(i.e., is a continuous lattice) if and only if the semilattice D4 is stably continuous. This
implies that a continuous semilattice D with a bottom element is complete if and only if
the semilattice D∧ is stably continuous.

Similarly to [D → L]∧, for a continuous lattice D we denote

[D → L]∨ = {f ∈ [D → L] | f(d1 ∨ d2) = f(d1)⊕ f(d2) for all d1, d2 ∈ D}.

Let D be a continuous lattice. Recall that the posets [D4 → L̃] and [D → L] are
antiisomorphic through the mapping q, cf. Theorem 3.
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Theorem 10. The image of [D4 → L̃]∧ under the antiisomorphism q : [D4 → L̃]→ [D →
L] is the set [D → L]∨.

Proof is trivial.

Corollary 7. For a continuous lattice D, the set [D → L]∨ is a closed w.r.t. the dual
Lawson topology upper subsemilattice of [D → L] with a bottom element, therefore is
a dually continuous lattice.

Analogously the following assertion is true.

Theorem 11. For a complete continuous semilattice D with a bottom element, the antiiso-
morphism q0 : [D∧ → L̃]0 → [D → L]0 maps the set [D∧ → L̃]∧0 onto the set

[D → L]∨01 =

{
f ∈ [D → L]0 | f(d1)⊕f(d2) =

{
f(d1 ∨ d2), if d1 ∨ d2 exists,
1 otherwise,

d1, d2 ∈ D

}
,

and the set [D∧ → L̃]∧+0 onto the set

[D → L]∨0 =

{
f ∈ [D → L]0 | f(d1)⊕ f(d2) =

{
f(d1 ∨ d2), if d1 ∨ d2 exists,
sup f(D) otherwise,

d1, d2 ∈ D

}
.

Corollary 8. For a complete continuous semilattice D with a bottom element, the sets
[D → L]∨0 and [D → L]∨01 are closed w.r.t. the dual Lawson topology upper subsemilattices
of [D → L]0, therefore [D → L]∨01 is a complete dually continuous semilattice, and [D →
L]∨0 is a dually continuous lattice.

It is obvious how to obtain dual approximations from above and from below for the ele-
ments of [D → L]∨ and [D → L]∨0.

Similarly to Lemma 2, we obtain the following statement.

Lemma 5. For each element x of a domain D and a function f : D → L, denote by fx
the following function from D to L:

fx(d) =

{
0, d 6 x,

inf{f(d′) | d′ 66 x}, d 66 x,
d ∈ D.

(a) If D is a continuous lattice and f ∈ [D → L]∨, then f(d) = sup{fx(d) | x ∈ D} ⊕ f(0)
for all d ∈ D.

(b) If D is a complete continuous semilattice and f ∈ [D → L]∨0, then f(d) = sup{fx(d) |
x ∈ D} for all d ∈ D.

Proof. (a) For each x ∈ D we have fx 6 f , therefore f(d) > sup{fx(d) | x ∈ D} ⊕ f(0) for
all d ∈ D. On the other hand, for each α ∈ L, α > f(0), the set f−1({α}↓) ⊂ D is non-
empty, lower, directed and Scott closed, hence is of the form {xα}↓ for a uniquely determined
xα ∈ D.

The set L0 = {α ∈ L | α > f(0)} is a complete sublattice of L, hence is a completely
distributive lattice. Since f(D \ {xα}↓) ⊂ {β ∈ L0 | β 66 α}, we have inf{f(d′) | d′ 66 xα} >
inf{β ∈ L0 | β 66 α}, and the inequality

sup{fx(d) | x ∈ D} ⊕ f(0) > sup{fxα(d) | α ∈ L0} ⊕ f(0) >

> sup{inf{β ∈ L0 | β 66 α} | α ∈ L0, α 6> f(d)} = f(d)
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is valid for all d ∈ D.
(b) is obtained from (a) by adjoining a top element > to D and putting f(>) = 1.

Taking into account Theorems 10, 11, Lemma 4, and Remark 4, we deduce the following
statement.

Theorem 12. (a) For a continuous lattice D, each join-preserving Scott continuous function
f : D → L is an argumentwise infimum of a filtered set {fi | i ∈ I} of join-preserving Scott
continuous functions D → L with finite ranges.

(b) For a complete continuous semilattice D, each function f ∈ [D → L]∨0 is an argu-
mentwise infimum of a filtered set {fi | i ∈ I} elements of [D → L]∨0 with finite ranges.

Following the accepted notation style, we denote M∧[L]D = [D → Lop]op∧ for a stably
continuous semilattice D with a top element, M∨[L]D = [D → Lop]op∨ for a continuous lattice
D,M∧[L]D = [D → Lop]op∧0 for a stably continuous semilatticeD, andM∨[L]D = [D → Lop]op∨01

for a complete continuous semilattice D. Observe that under these assumptions M∧[L]D is
a dually continuous lattice, M∨[L]D is a continuous lattice, M∧[L]D is a complete dually
continuous semilattice, and M∨[L]D is a complete continuous semilattice.

Corollary 9. For continuous semilattices D, D′ with top elements such that D is comp-
lete and there is a separating polarity P ⊂ D × D′, the posets M∨[L]D and M∧[L̃]D

′ are
antiisomorphic.

Corollary 10. For continuous semilattices D, D′ with bottom elements such that D is
complete and there is a separating polarity P ⊂ D×D′, the posets M∨[L]D and M∧[L̃]D

′ are
antiisomorphic.

In particular, the restrictions of κ[L]D and κ[L]D provide respectively the antiisomor-
phisms

κ∨[L]D : M∨[L]D →M∧[L̃]D
4, κ∨[L]D : M∨[L]D →M∧[L̃]D

∧,

with the inverse mappings

κ∧[L]D
4 : M∧[L̃]D

4 →M∨[L]D, κ∧[L]D
4 : M∧[L̃]D

∧ →M∨[L]D.

8. Semimodules of monotonic predicates as free continuous idempotent semi-
modules over domains. An important observation is that there is a topological and order
embedding of D to M [L](D) (and M[L](D), if D has a bottom element).

For an element d0 ∈ D, we denote by η[L]D(d0) the function D → L that sends each
d ∈ D to 1 if d 6 d0 and to 0 otherwise. It is easy to see that η[L]D(d0) ∈ M[L]D ⊂ M [L]D,
and δDL = η[L]D(0) is a least element of M[L]D.

Lemma 6 (1.1, [17]). For a domain D, the mapping η[L]D : D →M [L]D is Scott continuous
and lower continuous.

Moreover, if D is a continuous semilattice, then η[L]D is a semilattice morphism.

Remark. For D with a bottom element, M[L]D is a complete sublattice of M [L]D, hence we
obtain that η[L]D is Scott and lower continuous also as a mapping D →M[L]D.
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Therefore we consider D as a subspace of both M[L]D and M [L]D w.r.t. the Scott and
the lower, hence w.r.t. the Lawson topologies on the both sets. If D is a continuous semi-
lattice, it is also a lower subsemilattice of M[L]D and M [L]D.

The following result was proved in [15].

Theorem 13. For each Scott continuous mapping ϕ : D → K from a domain to a continuous
L-semimodule there is a unique extension Φ: M [L]D → K to a morphism in (L,⊕, ∗)-
CSMod↑.

Since a required extension Φ must preserve multiplication and all suprema, and each
monotonic predicate m ∈ M [L]D is the supremum of all products m(d) ∗̄ η[L]D(d), it is
obvious that

Φ(m) = sup{m(d) ∗̄ϕ(d) | d ∈ D}, m ∈M [L]D.

Similarly:

Theorem 14. For each Scott continuous mapping ϕ : D → K from a domain with a bottom
element to a continuous L-semimodule there is a unique extension Φ: M[L]D → K to
a morphism in (L,⊕, ∗)-CSAff↑. It is linear, i.e. it is a morphism in (L,⊕, ∗)-CSMod↑,
if and only if ϕ preserves the bottom element.

This extension is determined by the same formula.
As it was noted in [15], the two latter statements mean thatM [L]D (resp.M[L]D) is a free

object over D. The following series is their more formal equivalent reformulation.

Theorem 15 (1.4, [15]). For an object D of the category Dom the continuous L-semimodule
M [L]D is a free object over D in (L,⊕, ∗)-CSMod↑.

Theorem 16 (1.5, [15]). For an object D of the category Dom⊥ the continuous L-semimo-
dule M[L]D is a free object over D in (L,⊕, ∗)-CSAff↑.

Theorem 17 (1.6, [15]). For an object D of the category Dom0 the continuous L-semimo-
dule M[L]D is a free object over D in (L,⊕, ∗)-CSMod↑.

Given a Scott continuous mapping f : D → D′ between domains, and taking into account
that D′ is a subspace of M [L]D

′, by Theorem 13 we can extend the mapping f to a linear
Scott continuous mapping M [L]D → M [L]D

′, which is unique and denoted by M [L]f . It is
worth noting that it does not depend on the multiplication ∗ : L× L→ L:

M [L]f(m)(d′) = inf
{

sup{m(d) | d ∈ D, f(d) > d′0} | d′0 � d′
}
, d′ ∈ D′.

Thus the functorM [L] : Dom→ (L,⊕, ∗)-CSMod↑, which is a left adjoint ([11]) to the for-
getful functor (L,⊕, ∗)-CSMod↑ → Dom, is obtained.

Similarly, a Scott continuous mapping f : D → D′ between domains with bottom ele-
ments is uniquely extended to a Scott continuous affine mapping M[L]f : M[L]D → M[L]D

′,
namely

M[L]f(m)(d′) = inf
{

sup{m(d) | d ∈ D, f(d) > d′0} | d′0 � d′
}
, d′ ∈ D′ \ {0},

M[L]f(m)(0) = 1. The resulting functor M[L] : Dom⊥ → (L,⊕, ∗)-CSAff↑ is left adjoint
to the forgetful functor (L,⊕, ∗)-CSAff↑ → Dom⊥, and its restriction, for which we use
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the same notation, to Dom0 → (L,⊕, ∗)-CSMod↑, is left adjoint to the forgetful functor
(L,⊕, ∗)-CSMod↑ → Dom0.

Unfortunately, for lower topologies the straightforward analogues of the above statements
fail to be valid. It seems that the requirement that D is a domain is too loose. Nevertheless,
it is sufficient to add the requirement of compactness. Then, using ideas from [13], we obtain
the following statement.

Theorem 18. Let ∗ : L×L→ L be Lawson continuous and let D be a complete continuous
semilattice. For each lower continuous mapping ϕ : D → K from D to a continuous L-semi-
module there is a unique extension Φ: M [L]D → K to a morphism in (L,⊕, ∗)-CSMod↓.

Theorem 19. Let ∗ : L×L→ L be Lawson continuous and let D be a complete continuous
semilattice. For each lower continuous mapping ϕ : D → K from D to a continuous L-semi-
module there is a unique extension Φ: M[L]D → K to a morphism in (L,⊕, ∗)-CSAff↓. It
is linear, i.e. it is a morphism in (L,⊕, ∗)-CSMod↓, if and only if ϕ preserves the bottom
element.

The formula is the same in both cases:

Φ(m) = sup{m(d) ∗̄ϕ(d) | d ∈ D},

for m ∈ M [L]D or m ∈ M[L]D. Recall that LLaws↓ is the category of complete continuous
semilattices and their lower continuous (not necessarily meet-preserving mappings), and
LLaws0↓ is its subcategory obtained by taking all objects and only the bottom-preserving
mappings. Then, more formally:

Theorem 20. If ∗ : L × L → L is Lawson continuous, then for an object D of the cate-
gory LLaws↓ the continuous L-semimodule M [L]D is a free object over D in the category
(L,⊕, ∗)-CSMod↓.

Theorem 21. If ∗ : L × L → L is Lawson continuous, then for an object D of the cate-
gory LLaws↓ the continuous L-semimodule M[L]D is a free object over D in the category
(L,⊕, ∗)-CSAff↓.

Theorem 22. If ∗ : L × L → L is Lawson continuous, then for an object D of the cate-
gory LLaws0↓ the continuous L-semimodule M[L]D is a free object over D in the category
(L,⊕, ∗)-CSMod↓.

9. Free continuous idempotent semimodules over continuous semilatices. An
important class of domains consists of continuous semilattices. Recall that η[L]D : D ↪→
M [L]D preserves the meets. Assume that ϕ : D → K is a Scott continuous meet-preserving
mapping from a continuous semilattice to a continuous L-semimodule. Does this guarantee
that the unique Scott continuous linear extension Φ: M [L]D → K of ϕ preserves the meets
as well?

Theorem 23. For a continuous L-semimodule (K, ⊕̄, ∗̄) the following statements are equi-
valent:

(a) K is a distributive lattice, and the multiplication ∗̄ satisfies the equality

(α ∗̄x) ⊗̄(β ∗̄ y) = (α⊗ β) ∗̄(x ⊗̄ y), α, β ∈ L, x, y ∈ K;
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(b) K is a distributive lattice, and there is a Scott continuous lattice morphism p : L→ K
such that the multiplication ∗̄ is determined by the equality

α ∗̄x = p(α) ⊗̄x, α ∈ L, x ∈ K;

(c) for each Scott continuous meet-preserving mapping ϕ from a continuous semilattice
D to K the unique Scott continuous linear extension Φ: M [L]D → K of ϕ preserves
the meets;

(d) for each Scott continuous meet-preserving mapping ϕ from a continuous semilattice
D to K the unique Scott continuous affine extension Φ: M[L]D → K of ϕ preserves
the meets;

(e) for each Scott continuous meet-preserving bottom-preserving mapping ϕ from a conti-
nuous semilattice D to K the unique Scott continuous linear extension Φ: M[L]D → K
of ϕ preserves the meets.

Proof.
(a)⇒(b) The equality in (a) is equivalent to the following two equalities

(α ∗̄ 1̄) ⊗̄(β ∗̄ 1̄) = (α⊗ β) ∗̄ 1̄, α ∗̄x = (α ∗̄ 1̄) ⊗̄x, α, β ∈ L, x ∈ K,

where 1̄ is the top element of K. The first of them together with the definition of an idem-
potent semimodule implies that the mapping p : L → K that sends each α ∈ L to α ∗̄ 1̄
preserves all suprema, finite infima, the top and the bottom elements. Then the second
equality means that α ∗̄x = p(α) ⊗̄x for all α ∈ L, x ∈ K.

(b)⇒(a) is obvious.
(a)⇒(c) Assume that m1,m2 ∈M [L]D, recall that (m1 ⊗̄m2)(d) = m1(d)⊗m2(d) for all

d ∈ D, and compare

Φ(m1 ⊗̄m2) = sup
d∈D
{(m1(d)⊗m2(d)) ∗̄ϕ(d)}

and
Φ(m1) ⊗̄Φ(m2) = sup

d′∈D
{m1(d′) ∗̄ϕ(d′)} ⊗̄ sup

d′′∈D
{m2(d′′) ∗̄ϕ(d′′)}.

Since continuous lattices are meet continuous ([4]), by the distributivity of K the latter
equality is equivalent to the following one

sup
d′,d′′∈D

{(m1(d′) ∗̄ϕ(d′)) ⊗̄(m2(d′′) ∗̄ϕ(d′′))} = sup
d′,d′′∈D

{(m1(d′)⊗m2(d′′)) ∗̄ϕ(d′ ⊗ d′′))} >

> sup
d′,d′′∈D,
d′=d′′

{(m1(d′)⊗m2(d′′)) ∗̄ϕ(d′ ⊗ d′′))} = sup
d∈D
{(m1(d)⊗m2(d)) ∗̄ϕ(d))} = Φ(m1 ⊗̄m2).

On the other hand,

sup
d′,d′′∈D

{(m1(d′) ∗̄ϕ(d′)) ⊗̄(m2(d′′) ∗̄ϕ(d′′))} 6

6 sup
d′,d′′∈D

{(m1(d′ ⊗̄ d′′) ∗̄ϕ(d′)) ⊗̄(m2(d′ ⊗̄ d′′) ∗̄ϕ(d′′))} =

= sup
d′,d′′∈D

{(m1(d′ ⊗̄ d′′)⊗m2(d′ ⊗̄ d′′)) ∗̄ϕ(d′ ⊗ d′′)} =

= sup
d∈D
{(m1(d)⊗m2(d)) ∗̄ϕ(d))} = Φ(m1 ⊗̄m2).
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Thus Φ(m1 ⊗̄m2) = Φ(m1) ⊗̄Φ(m2).
(c)⇒(a) To show that the equality x1 ⊗̄(x2 ⊕̄x3) = (x1 ⊗̄x2) ⊕̄(x1 ⊗̄x3) holds for all

x1, x2, x3 ∈ K, let D be the ordered reverse to inclusion set of all nonempty subsets of
{a1, a2, a3}.

Define m1,m2 : D → L by

m1(d) =

{
1, d 3 a1,

0, d 63 a1,
m2(d) =

{
1, d 3 a2 or d 3 a3,

0, a2, a3 /∈ d,
d ∈ D.

Observe that

(m1 ⊗̄m2)(d) =

{
1, d ⊃ {a1, a2} or d ⊃ {a1, a3},
0 otherwise,

d ∈ D.

Let also ϕ : D → K be defined as follows: ϕ(d) = inf{xi | ai ∈ d}, d ∈ D. The mapping
ϕ : D → K is meet-preserving, and

Φ(m1) = x1, Φ(m2) = x2 ⊕̄x3, Φ(m1 ⊗̄m2) = (x1 ⊗̄x2) ⊕̄(x1 ⊗̄x3),

therefore the meet preservation by Φ implies the required distributive law.
Now let D = {0, a, b}, 0 be the bottom element, a and b be incomparable, α, β ∈ L.

Define m1,m2, f : D → L as follows:

m1(d) =

{
α, d ∈ {0, a},
0, d = b,

m2(d) =

{
β, d ∈ {0, b},
0, d = a,

f(d) =


x, d = a,

y, d = b,

x ⊗̄ y, d = 0,

for all d ∈ D. Then m1,m2 ∈ M [L]D, and f : D → K is continuous and meet-preserving.
Observe also that

(m1 ⊗̄m2)(d) =

{
α⊗ β, d = 0,

0, d ∈ {a, b},
d ∈ D.

Then
Φ(m1) = α ∗̄x, Φ(m2) = β ∗̄ y, Φ(m1 ⊗̄m2) = (α⊗ β) ∗̄(x ⊗̄ y),

therefore the equality Φ(m1 ⊗̄m2) = Φ(m1) ⊗̄Φ(m2) yields the equality required by (a).
(c)⇒(d) because the mentioned affine extension of ϕ : D → K to M[L]D is the restriction

of the linear extension of ϕ to M [L]D, and M[L]D is a complete sublattice of M [L]D.
(d)⇒(e) because (e) is a particular case of (d).
(e)⇒(c) For a continuous semilattice D, adjoin the bottom element ⊥ and obtain the

semilattice D⊥ = D∪{⊥}. Each element of M[L]D⊥ can be obtained from some m ∈M [L]D
as follows:

m⊥(d) =

{
m(d), d ∈ D,
1, d = ⊥,

d ∈ D⊥.

The correspondence m→ m⊥ is a semimodule isomorphism betweenM [L]D andM[L]D⊥.
Similarly, the meet-preserving bottom-preserving mappings fromD⊥ toK are precisely those
of the form

ϕ⊥(d) =

{
ϕ(d), d ∈ D,
0̄, d = ⊥,

d ∈ D⊥,
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for the meet-preserving mappings ϕ : D → K. Finally, for the Scott continuous affine exten-
sion Φ of ϕ and the Scott continuous linear extension Φ⊥ of ϕ⊥ the equality Φ(m) = Φ⊥(m⊥)
is valid for allm ∈M [L]D. Thus, if all Φ⊥ are meet-preserving, then all Φ are meet-preserving
as well, i.e., (e) implies (c).

It is easy to see that the mapping p : L → K in the previous statement satisfies also
the equality p(α ∗ β) = p(α ⊗ β) for all α, β ∈ L. Given a Scott continuous lattice mor-
phism p from a completely distributive lattice (L,⊕,⊗) to a distributive continuous lattice
K, the simplest way to make K an (L,⊕, ∗)-semimodule that satisfies (b) above is to put
∗ = ⊗.

Such a distributive continuous (L,⊕,⊗)-semimodule will be called a continuous L-bicon-
vex set. We denote by L- CSAff↑ the category of all continuous L-biconvex sets and their Scott
continuous affine mappings that preserve finite infima, and L- CSMod↑ is its subcategory
with the same objects and all bottom-preserving (i.e., linear) morphisms.

Theorem 24. If the multiplications in continuous L-biconvex sets K and K ′ are determined
by lattice morphisms p : L → K and p′ : L → K ′, then f : K → K ′ is a morphism in
L- CSAff↑ is and only if f is a morphism in CSem, preserves the joins and f(p(α)) = (p′(α)⊕
f(0̄)) ⊗̄ f(1̄) for all α ∈ L.

Proof is straightforward.
Observe that (M [L]D, ⊕̄, ~̄) and (M[L]D, ⊕̄, �̄) are continuous L-biconvex sets. The requi-

red mapping p : L→ M [L]D takes each α ∈ L to the predicate that sends each d ∈ D to α.
For M[L]D the predicate p(α) sends 0 to 1 and all other elements of D to α.

Similarly we obtain:

Theorem 25. For an object D of the category CSem the continuous L-biconvex set M [L]D
is a free object over D in L- CSMod↑.

Theorem 26. For an object D of the category CSem⊥ the continuous L-biconvex setM[L]D
is a free object over D in L- CSAff↑.

Theorem 27. For an object D of the category CSem0 the continuous L-biconvex set M[L]D
is a free object over D in L- CSMod↑.

Thus we obtain the functors, which, abusing the notation, we define M [L] : CSem →
L- CSMod↑, M[L] : CSem⊥ → L- CSAff↑, M[L] : CSem0 → L- CSMod↑. They are left ad-
joint to the forgetful functors acting in the opposite directions. In particular, for each Scott
continuous meet-preserving mapping of continuous semilattices f : D → D′ its extensions
MLf : M [L]D → M [L]D

′ and MLf : M[L]D → M[L]D
′ (if the latter one exists) preserve

the meets. This can also be verified by direct calculations.
In fact, we can narrow the ranges of the obtained left adjoint functors. Let a conti-

nuous L-biconvex set (K, ⊕̄, ∗̄) be also dually continuous, then by Theorem VII-2.10 [4] it is
completely distributive. If the mentioned correspondence p : α 7→ α ∗̄ 1̄ is also dually Scott
continuous, i.e., is Lawson continuous, then (Kop, ⊗̄, ∗̄) is also a continuous Lop-biconvex set,
where α ∗

¯
x = (α ∗̄ 1̄) ⊕̄x is a Lawson continuous multiplication. Obviously, we can restore

the original operation by the formula α ∗̄x = (α ∗
¯

0̄) ⊗̄x. Such a “two-side” L-semimodule

will be called an L-biconvex compactum, and M [L]D and M[L]D belong to this class. A map-
ping f : K → K ′ between L-biconvex compacta is affine and meet-preserving if and only if
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the mapping f : Kop → K ′op is affine and meet-preserving w.r.t. the corresponding operations
on the “turned upside down” semimodules. Therefore such mappings are called “biaffine”, and
the category of L-biconvex compacta and their Lawson continuous biaffine (hence isotone)
mappings will be denoted L-BiConv.
10. Free dually continuous semimodules over dually continuous lattices. It has been
proved in the previous section that, for a continuous semilatticeD, the L-semimodulesM [L]D
andM[L]D “inherit” the meets in D, and the meets are preserved by the mappings of the form
M [L]f and M[L]f for all Scott continuous semilattice morphisms f . On the other hand, meet
operation is not of much importance in idempotent semimodules. Join, i.e., addition, is more
important, and each join semilattice can be regarded as 2-semimodule, for 2 = {0, 1}. In
particular, a dually continuous semilattice with a bottom element is a dually continuous 2-se-
mimodule. Thus a problem naturally arises: given such a 2-semimodule, how to “enrich” it to
make it a dually continuous L-semimodule for a bigger completely distributive quantale L?

To obtain a solution for the complete dually continuous semimodules, i.e., the compact
Hausdorff Lawson L-semimodules, in this section we assume that ∗ : L×L→ L is both Scott
continuous and dually Scott continuous, hence Lawson continuous.

Let S be a dually continuous lattice, then the meet semilattice Sop is a continuous lattice.
It is easy to see that, for an element s ∈ S, the mapping η∨[L]S(s) : Sop → L that is defined
as follows:

η∨[L]S(s)(d) =

{
0, s 6 d in S,
1, s 66 d in S,

d ∈ S

is Scott continuous, and the correspondence η∨[L]S : S → [Sop → L] is join preserving and
continuous w.r.t. the upper, the dual Scott, and the dual Lawson topologies. Taking into
account that η∨[L]S(s) ∈ [Sop → L]∨0, we obtain the embedding η∨[L]S : S → [Sop → L]∨0

w.r.t. the mentioned topologies.
Thus in the sequel we consider S as a subspace of [Sop → L]∨0 w.r.t. the dual Scott,

the upper and the dual Lawson topologies. Observe also that, for L = 2, the embedding
η∨[2]S is an order isomorphism and a homeomorphism.

Recall that ([Sop → L]∨0, ⊕̄, ∗̄) is a complete dually continuous L-semimodule, and by
Lemma 5 each f ∈ [Sop → L]∨0 is equal to

f(d) = sup
s∈S
{ inf
d′ 6>s

f(d′)} ∗ η∨[L]S(s)(d)

for all d ∈ S.

Lemma 7. Let f = supi∈I αi ∗̄ η∨[L]S(si) for a subset {(αi, si) | i ∈ I} ⊂ L × S. Then, for
each s ∈ S:

inf
d6>s

f(d) = sup
{

inf
i∈J

αi
∣∣ J ⊂ I, sup

i∈J
si > s

}
.

Proof. It is clear that, for each J ⊂ I such that supi∈J si > s, the inequality

sup
i∈J

αi ∗ η∨[L]S(si)(d) > inf
i∈J

αi

holds for each d ∈ S, d 6> s. Thus the inequality

inf
d6>s

f(d) > sup
{

inf
i∈J

αi
∣∣ J ⊂ I, sup

i∈J
si > s

}
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is immediate.
Assume that there is no equality. Since L is completely distributive, each α ∈ L is the least

upper bound of all β ∈ L such that β ≪ α (β is way-way below α, cf. [4]), which means that
each subset Γ ⊂ L such that sup Γ > α contains an element γ > β. Then there is β ∈ L,
β ≪ infd6>s f(d) such that β precedes no infi∈J αi for J ⊂ I such that supi∈J si > s.

This means that, for all d 6> s, there is i ∈ I such that αi > β, d 6> si. Let J = {i ∈ I |
αi > β}, then ⋃

i∈J

{d ∈ S | d 6> si} ⊃ {d ∈ S | d 6> s},

i.e.,
⋂
i∈J
{si}↑ ⊂ {s}↑, hence supi∈J si > s, which contradicts the inequality infi∈J αi > β.

Thus the required equality is valid.

Theorem 28. Let S be a dually continuous lattice, the multiplication ∗ : L×L→ L Lawson
continuous, (K, ⊕̄, ∗̄) a dually continuous L-semimodule. Then each upper continuous, dual
Scott continuous, or dual Lawson continuous join-preserving bottom-preserving mapping ϕ
from S to K has a unique linear respectively upper continuous, dual Scott continuous, or
dual Lawson continuous extension Φ: ([Sop → L]∨0, ⊕̄, ∗̄)→ (K, ⊕̄, ∗̄).

Proof. If f ∈ [Sop → L]∨0 has a finite range, then it is of the form

f = α1 ∗̄ η∨[L]S(s1) ⊕̄ . . . ⊕̄αn ∗̄ η∨[L]S(sn),

with α1, . . . , αn ∈ L, s1, . . . , sn ∈ S, and

αi = inf{f(d) | d ∈ S, d 6> si}, i = 1, . . . , n.

Note that η∨[L]S(minS) is the constant function equal to 0, and for si = 0 we obtain αi = 1.
If a mapping Φ from [Sop → L]∨0 to a complete dually continuous L-semimodule K is

linear, and Φ ◦ η∨[L]S = ϕ : S → K, then ϕ is join-preserving, and

Φ(f) = sup
s∈{s1,...,sn}

inf{f(d) | d ∈ S, d 6> s} ∗̄ϕ(s) 6 sup
s∈S

inf{f(d) | d ∈ S, d 6> s} ∗̄ϕ(s).

On the other hand, f > sup{f(d) | d ∈ S, d 6> s} ∗̄ η∨[L]S(s) for each s ∈ S, hence
the reverse inequality is valid. Thus

Φ(f) = sup
s∈S

inf{f(d) | d ∈ S, d 6> s} ∗̄ϕ(s)

for all f ∈ [Sop → L]∨0 with finite ranges.
For each ϕ : S → K, the latter formula defines a function Φ: [Sop → L]∨0 → K. Let either

ϕ preserve finite suprema and {(αi, si) | i ∈ I} ⊂ L× S be finite, or ϕ preserve all suprema
and {(αi, si) | i ∈ I} ⊂ L × S be arbitrary. The previous lemma implies that the image
under Φ of a function f = supi∈I αi ∗̄ η∨[L]S(si), for a subset {(αi, si) | i ∈ I} ⊂ L × S, is
equal to

Φ(f) = sup
s∈S

(
sup
{

inf
i∈J

αi
∣∣ J ⊂ I, sup

i∈J
si > s

}
∗̄ϕ(s)

)
6

6 sup
s∈S

(
sup
{

inf
i∈J

αi ∗̄ϕ(sup
i∈J

si)
∣∣ J ⊂ I, sup

i∈J
si > s

})
=

= sup
{

inf
i∈J

αi ∗̄ sup
i∈J

ϕ(si)
∣∣ J ⊂ I} = sup

{
sup
i∈J

(
inf
j∈J

αj ∗̄ϕ(si)
) ∣∣ J ⊂ I} 6 sup

i∈I
αi ∗̄ϕ(si).
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The reverse inequality

Φ(f) > sup
i∈I

Φ(αi ∗̄ η∨[L]S(si)) = sup
i∈I

αi ∗̄ϕ(si)

holds due to the monotonicity of Φ, which is obvious.
This and ϕ(minS) = 0̄ implies that

Φ(α1 ∗̄ f1 ⊕̄ . . . ⊕̄αn ∗̄ fn) = α1 ∗̄Φ(f1) ⊕̄ . . . ⊕̄αn ∗̄Φ(fn)

for all α1, . . . , αn ∈ L, f1, . . . , fn ∈ [Sop → L]∨0. If ϕ preserves all suprema, then the ana-
logous equality is valid for an infinite number of functions. The equality Φ ◦ η∨[L]S = ϕ is
immediate.

Thus a linear extension Φ of ϕ is obtained. It is routine but straightforward to verify that,
if ϕ is upper, dual Scott, or dual Lawson continuous, then the same holds for the extension Φ,
and Lemma 5 and 12 imply that such an extension is unique.

An equivalent formulation:

Theorem 29. The dually continuous L-semimodule ([Sop → L]∨0, ⊕̄, ∗̄) is a free object
in the categories (L,⊕, ∗)-LwSMod, (L,⊕, ∗)-LwSMod↑, and (L,⊕, ∗)-LwSMod↓ over
the object S of DL0, DL↑0, and DL↓0, respectively.

If we are interested in affine extensions, a slight modification is necessary.

Theorem 30. Let S be a dually continuous lattice, the multiplication ∗ : L×L→ L Lawson
continuous, (K, ⊕̄, ∗̄) a dually continuous L-semimodule. Then each upper continuous, dual
Scott continuous, or dual Lawson continuous join-preserving mapping ϕ from S to K has
a unique affine respectively upper continuous, dual Scott continuous, or dual Lawson conti-
nuous extension Φ: ([Sop → L]∨0, ⊕̄, ∗̄)→ (K, ⊕̄, ∗̄).

Or, equivalently:

Theorem 31. The dually continuous L-semimodule ([Sop → L]∨0, ⊕̄, ∗̄) is a free object in
the categories (L,⊕, ∗)-LwSAff, (L,⊕, ∗)-LwSAff↑, and (L,⊕, ∗)-LwSAff↓ over the object
S of DL, DL↑, and DL↓, respectively.

Proof is quite analogous, and the formula for the extensions is similar

Φ(f) = sup
s∈S

inf{f(d) | d ∈ S, d 6> s} ∗̄ϕ(s)⊕ ϕ(minS)

for all f ∈ [Sop → L]∨0.

11. Concluding remarks. Free dually continuous semimodules over dually continuous
semilattices, as well as free compact L-convex sets, will be considered in our future paper.

The author expresses his gratitude to Prof. Klaus Keimel for valuable comments and
suggestions on [13], which is a predecessor to this paper, in particular, for his advice to use
more “functional” language and technique.
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